ઉપવલય કે જેની અક્ષો યામાક્ષોની અક્ષો હોય તથા જે બિંદુ $(-3,1) $ માંથી પસાર થાય અને ઉત્કેન્દ્રતા $\sqrt {\frac{2}{5}} $ હોય તેવા ઉપવલયનું સમીકરણ મેળવો.
$5{x^2} + 3{y^2} - 48 = 0$
$\;3{x^2} + 5{y^2} - 15 = 0$
$\;5{x^2} + 3{y^2} - 32 = 0$
$\;3{x^2} + 5{y^2} - 32 = 0$
અનુપ્રસ્થ અક્ષોની લંબાઈ $2\ sin\ \theta$ ધરાવતો અતિવલય, એ ઉપવલય $3x^2 + 4y^2 = 12$ સાથે સમનાભિ હોય, તો તેનું સમીકરણ.....
ઉપવલય $\frac{{{x^2}}}{{16}}\,\, + \;\,\frac{{{y^2}}}{9}\,\, = \,\,1$ની નાભિઓમાંથી પસાર થતાં અને $(0, 3)$ કેન્દ્ર ધરાવતા વર્તૂળની ત્રિજ્યા =
જો ઉપવલયની ગૌણ અક્ષ (તેની અક્ષોને અનુક્રમે $x$ અને $y$ ની અક્ષ તરીકે લેતા) ના અંત્યબિંદુનું નાભિ અંતર $k$ હોય અને તેની નાભિઓ વચ્ચેનું અંતર $2h$ હોય તો તેનું સમીકરણ :
જો ઉપવલય $\frac{x^{2}}{b^{2}}+\frac{y^{2}}{4 a^{2}}=1$ ના સ્પર્શક અને યામક્ષો દ્વારા બનતા ત્રિકોણનું ન્યૂનતમ ક્ષેત્રફળ $kab$ હોય તો $\mathrm{k}$ ની કિમંત મેળવો.
જો બે ભિનન શાંકવો $x^2+y^2=4 b$ અને $\frac{x^2}{16}+\frac{y^2}{b^2}=1$ ના છેદ બિંદુઓ, વક્ર $y^2=3 x^2$ પર આવેલા હોય, તો આ છેદ બિંદુઓ દ્વારા રચાયેલ લંબચોરસના ક્ષેત્રફળના $3 \sqrt{3}$ ઘણા........................... થાય.